Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Microbiol Spectr ; 10(4): e0115422, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1938018

ABSTRACT

In August 2020, the Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for COVID-19 convalescent plasma (CCP) specified 12 authorized serologic assays and associated assay-specific cutoff values for the selection of high-titer CCP for use in hospitalized patients. The criteria used for establishing these cutoff values remains unclear. Here, we compare the overall agreement and concordance of five serologic assays included in the August 2020 FDA EUA at both the manufacturer-recommended qualitative cutoff thresholds and at the FDA-indicated thresholds for high-titer CCP, using serum samples collected as part of the CCP Expanded Access Program (EAP). The qualitative positive percent agreement (PPA) across assays ranged from 92.3% to 98.8%. However, the high-titer categorization across assays varied significantly, with the PPA ranging from 26.5% to 82.7%. The Roche anti-NC ECLIA provided the lowest agreement compared to all other assays. Efforts to optimize high-titer cutoffs could reduce, although not eliminate, the discordance across assays. The consequences of using nonstandardized assays are apparent in our study, and the high-titer cutoffs chosen for each assay are not directly comparable to each other. The generalized findings in our study will be relevant to any future use of convalescent plasma for either COVID-19 or future pandemics of newly emerged pathogens. IMPORTANCE COVID-19 convalescent plasma (CCP) was one of the first therapeutic options available for the treatment of SARS-CoV-2 infections and continues to be used selectively for immunosuppressed patients. Given the emergence of novel SARS-CoV-2 variants which are resistant to treatment with available monoclonal antibody (MAb) therapy, CCP remains an important therapeutic consideration. The FDA has released several emergency use authorizations (EUA) that have specified which serological assays can be used for qualification of CCP, as well as assay-specific cutoffs that must be used to identify high-titer CCP. In this study, a cohort of donor CCP was assessed across multiple serological assays which received FDA EUA for qualification of CCP. This study indicates a high degree of discordance across the assays used to qualify CCP for clinical use, which may have precluded the optimal use of CCP, including during clinical trials. This study highlights the need for assay standardization early in the development of serological assays for emerging pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral/therapeutic use , COVID-19/diagnosis , COVID-19/therapy , COVID-19 Testing , Humans , Immunization, Passive , United States , United States Food and Drug Administration , COVID-19 Serotherapy
2.
J Proteome Res ; 21(1): 142-150, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1517588

ABSTRACT

COVID-19 vaccines are becoming more widely available, but accurate and rapid testing remains a crucial tool for slowing the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. Although the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains the most prevalent testing methodology, numerous tests have been developed that are predicated on detection of the SARS-CoV-2 nucleocapsid protein, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay-based approaches. The continuing emergence of SARS-CoV-2 variants has complicated these approaches, as both qRT-PCR and antigen detection methods can be prone to missing viral variants. In this study, we describe several COVID-19 cases where we were unable to detect the expected peptide targets from clinical nasopharyngeal swabs. Whole genome sequencing revealed that single nucleotide polymorphisms in the gene encoding the viral nucleocapsid protein led to sequence variants that were not monitored in the targeted assay. Minor modifications to the LC-MS/MS method ensured detection of the variants of the target peptide. Additional nucleocapsid variants could be detected by performing the bottom-up proteomic analysis of whole viral genome-sequenced samples. This study demonstrates the importance of considering variants of SARS-CoV-2 in the assay design and highlights the flexibility of mass spectrometry-based approaches to detect variants as they evolve.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Chromatography, Liquid , Humans , Nucleocapsid/genetics , Peptides , Proteomics , Tandem Mass Spectrometry
3.
J Clin Microbiol ; 59(9): e0123121, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1501537

ABSTRACT

Longitudinal studies assessing durability of the anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) humoral immune response have generated conflicting results. This has been proposed to be due to differences in patient populations, the lack of standardized methodologies, and the use of assays that measure distinct aspects of the humoral response. SARS-CoV-2 antibodies were serially measured in sera from a cohort of 44 well-characterized convalescent plasma donors over 120 days post-COVID-19 symptom onset, utilizing eight assays, which varied according to antigen source, the detected antibody isotype, and the activity measured (i.e., binding, blocking, or neutralizing). While the majority of assays demonstrated a gradual decline in antibody titers over the course of 120 days, the two electrochemiluminescence immunoassay Roche assays (Roche Diagnostics Elecsys anti-SARS-CoV-2 [qualitative, nucleocapsid based] and Roche Diagnostics Elecsys anti-SARS-CoV-2 S [semiquantitative, spike based]), which utilize dual-antigen binding for antibody detection, demonstrated stable and/or increasing antibody titers over the study period. This study is among the first to assess longitudinal, rather than cross-sectional, SARS-CoV-2 antibody profiles among convalescent COVID-19 patients, primarily using commercially available serologic assays with Food and Drug Administration emergency use authorization. We show that SARS-CoV-2 antibody detection is dependent on the serologic method used, which has implications for future assay utilization and clinical value.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/therapy , Cross-Sectional Studies , Humans , Immunization, Passive , Kinetics , Sensitivity and Specificity , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL